(b)楼梯平台预埋件高程设计误差
(c)基坑回填
桥梁智能检测与运维决策
2.1
桥梁智能检测技术
(b)机器人样机
2.2
智能识别算法
(b)裂缝最大宽度
(b)LSTM工作原理
2.3
智能评估及预测
(b)经验模态分解-神经网络法
(c)经验模态分解-遗传算法优化的神经网络法
(d)预测误差
2.4
智能养护维修
结论与展望
团队人员介绍
参考文献
[1] 来猛刚, 杨敏, 翟敏刚, 姚晓飞. 桥梁工业化智能建造[J]. 公路, 2021, 66(07): 195-202.
[2] 何祥平, 王浩, 张一鸣, 王飞球, 茅建校, 谢以顺. Revit-Midas/Civil模型转换方法及应用[J]. 东南大学学报(自然科学版), 2021, 51(05): 813-818.
[3] Korus K, Salamak M, Jasiński M. Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm[J]. Engineering Structures, 2021, 241: 112465.
[4] Nour N A, D Vié, Chateauneuf A, et al. Dimensioning of partially prestressed concrete beams, optimization of T-shaped section with heels[J]. Engineering Structures, 2021, 235(4): 112054.
[5] 唐煜, 岳杰, 华旭刚. 基于人工蜂群算法的桥梁有限元模型局部刚度修正[J]. 铁道科学与工程学报, 2021, 18(09): 2333-2343.
[6] Jawad F, Ozturk C, Wang D S, et al. Sizing and layout optimization of truss structures with artificial bee colony algorithm[J]. Structures, 2021, 30(2): 546-559.
[7] 徐喆, 辛景舟, 唐启智, 肖维娜, 李双江. 基于响应面法和麻雀搜索算法的结构有限元模型修正[J]. 科学技术与工程, 2021, 21(21): 9094-9101.
[8] 孙强, 周志勇, 胡传新, 秦鹏, 黄德睦. 流线型箱梁气动外形的数值优化[J]. 哈尔滨工业大学学报, 2021, 53(10): 93-100.
[9] Serwa A, Saleh M. New semi-automatic 3D registration method for terrestrial laser scanning data of bridge structures based on artificial neural networks[J]. Egyptian Journal of Remote Sensing and Space Science, 2021(6): 787-798.
[10] 万华平, 卫志成, 苏雷, 任伟新. 基于系统地震易损性的桥梁隔震支座优化设计[J]. 地震工程与工程振动, 2021, 41(05): 69-78.
[11] 付雷, 马闻达, 高鹏, 周建庭, 张俊, 赵月明. 基于RSM-WOA的桥梁结构有限元模型修正[J]. 中国科技论文, 2021, 16(08): 875-882.
[12] 冀伟, 邵天彦. 波形腹板钢箱-混凝土箱梁桥的有限元模型修正[J]. 西南交通大学学报, 2021, 56(01): 1-11.
[13] 秦世强, 甘耀威, 康俊涛. 基于改进万有引力搜索算法的南中环桥模型修正[J]. 振动与冲击, 2021, 40(19): 116-124 136.
[14] Musa A, Serdar C, Discrete sizing design of steel truss bridges through teaching-learning-based and biogeography-based optimization algorithms involving dynamic constraints[J]. Structures, 2021, 34: 3533-3547.
[15] 冯帆, 温伟斌, 伍彦斌, 曾文宋武, 黄方林. 桥梁钢-混结合段试验模型加载多目标优化[J]. 科学技术与工程, 2021, 21(19): 8212-8217.
[16] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(01): 67-75.
[17] 张茂勇. BIM技术在桥梁工程设计中的应用[J]. 建筑结构, 2021, 51(10): 170.
[18] 郭衡, 傅战工, 谭国宏, 杜勋, 唐超. 常泰长江大桥主塔沉井结构BIM正向设计应用[J]. 铁道标准设计, 2021, 65(11): 170-174.
[19] 田庆, 马少雄, 赵钦, 徐飞, 徐宏. 高铁桥梁墩柱模板结构体系自动化设计研究[J]. 铁道标准设计, 2021, 65(09): 105-110.
[20] 张宪亮. 基于OSG的BIM GIS在桥涵方案设计中的应用研究[J]. 铁道标准设计, 2021, 65(11): 175-179.
[21] 韩广晖, 李辉, 周清华, 宋浩, 罗天靖, 杨喜文. BIM技术在铁路桥梁工程中的应用及实现方法[J]. 铁道标准设计, 2021, 65(11): 166-169.
[22] 蒋浩鹏, 姜谙男. 基于BIM技术的桥梁模型设计及信息处理研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(12): 82-89.
[23] 陈华卫, 谢立广. Dynamo插件在T形梁桥BIM建模中的应用[J]. 公路, 2021, 66(05): 163-166.
[24] Alexis G, Boton C. A parametric BIM approach to foster bridge project design and analysis[J]. Automation in Construction, 2021, 126: 103679.
[25] 王文芳, 杨刚, 姜亚丽. 基于BIM的桥梁有限元模型转换与结构分析方法[J]. 大连海事大学学报, 2021, 47(03): 111-119.
[26] 马汝杰, 夏建平, 徐润, 马文琪, 张常勇. BIM技术在改扩建公路桥梁勘察设计中的应用研究[J]. 公路, 2021, 66(03): 85-89.
[27] 蔺鹏臻, 韩旺和. 基于BIM技术的混凝土桥梁耐久性分析软件开发[J]. 铁道工程学报, 2021, 38(03): 80-85.
[28] 刘旭政, 汤仲训, 贾丽华, 王鹏. 桥梁荷载试验车辆自动化布载程序对比分析[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(01): 113-120.
[29] 孟凡成, 王万峰. BIM技术在某变截面连续梁桥工程中的安全验算分析[J]. 公路, 2021, 66(08): 192-196.
[30] 张晖. BIM技术在棋盘洲长江公路大桥北锚碇施工中的应用[J]. 世界桥梁, 2021, 49(01): 89-94.
[31] 杜战军, 吴继峰, 任子健, 温庆杰. 大跨钢桁架桥梁施工BIM建模及信息化平台系统[J]. 公路, 2021, 66(11): 114-119.
[32] 黄宁, 李建华, 高伟, 吴斌斌, 梅浩. 基于BIM的重力式锚碇预应力锚固系统的研究[J]. 公路, 2021, 66(02): 151-155.
[33] 张田, 何理, 孙铭悦, 杨刚. 基于BIM技术的拱桥施工监控数据集成研究[J]. 铁道工程学报, 2021, 38(05): 47-52.
[34] 陶建军, 王荡, 于长海, 王烨人, 贾兴利, 陈星澎. 预制节段梁桥精细化BIM模型构建及平台可视化应用[J]. 公路, 2021, 66(12): 154-158.
[35] 王汁汁, 张勇, 王维. 悬索桥钢箱梁缆索吊装施工BIM技术应用研究[J]. 公路, 2021, 66(11): 182-188.
[36] 巴怀强, 李超, 孙凯, 胡兆峰, 周银. 基于点云模型的大吨位转体桥梁高效称重[J]. 科学技术与工程, 2021, 21(12): 5105-5110.
[37] 李浩, 王昊琪, 刘根, 王军令, Steve Evans, 李琳利, 王晓丛, Shuai Zhang, 文笑雨, 聂福全, 王新昌, 郝兵, 姜伟, 刘永光. 工业数字孪生系统的概念、系统结构与运行模式[J]. 计算机集成制造系统, 2021, 27(12): 3373-3390.
[38] 张鸿, 张永涛, 王敏, 郑和晖, 姬付全. 全过程自适应桥梁智能建造体系研究与应用[J]. 公路, 2021, 66(04): 124-136.
[39] 钟康健, 马超凡. 建筑信息模型 数字化 物联网技术引领下的智慧桥梁施工管理分析[J]. 公路, 2021, 66(07): 203-208.
[40] Svetlana B, Miroslaw J, Zhang X Q. Factors Affecting 3D Printing Technology Adaptation in Construction[J]. Journal of Construction Engineering and Management, 2021, 147(5): 04021026.
[41] 李施展. 3D打印技术在香溪长江大桥施工测量中的应用[J]. 测绘通报, 2021(S2): 121-124.
[42] 唐俊义, 周志祥, 余忠儒, 邓国军, 刘年. 一种新型装配式桥梁人-车隔离防撞护栏[J]. 科学技术与工程, 2021, 21(27): 11805-11812.
[43] 王志刚, 孙贵清, 余顺新, 贾俊峰. 公路桥梁装配式桥墩工业化快速建造技术[J]. 公路, 2021, 66(06): 145-150.
[44] 梁栋, 赵恺, 马印怀, 马骅, 李长丽. 基于3D激光扫描的钢桥塔节段虚拟装配方法[J]. 桥梁建设, 2021, 51(03): 62-71.
[45] 姜早龙, 臧格格. 桥梁工程装配式智能建造全过程管理研究[J]. 公路工程, 2021, 46(06): 39-45.
[46] Deng S W, Shao X D, ZHAO X D, et al. Precast steel–UHPC lightweight composite bridge for accelerated bridge construction[J]. Frontiers of Structural and Civil Engineering volume 15, 364–377 (2021).
[47] 胡明, 杨泽, 吴梅, 叶光友, 赵德明, 邱志强. 架桥车模块化桥节强度分析与拓扑优化[J]. 机械设计, 2021, 38(05): 19-25.
[48] 夏昊, 范晨阳. 市政装配化桥梁墩梁一体化架设施工关键技术[J]. 公路, 2021, 66(04): 85-89.
[49] 高贵, 赵永强. CRTS双块式无砟轨道一体化底座模板系统和自动整平设备研发与应用[J]. 铁道建筑, 2021, 61(06): 124-128.
[50] 赵天祺,勾红叶,陈萱颖,李文昊,梁浩,陈子豪,周思清.桥梁信息化及智能桥梁2020年度研究进展[J].土木与环境工程学报(中英文), 2021, 43(S1): 268-279.
[51] Yu S S, Xu Z F, Su Z Y, et al. Two Flexible Vision-based Methods for Remote Deflection Monitoring of a Long-span Bridge[J]. Measurement, 2021(1):109658.
[52] Abedin M, Mehrabi A B. Health monitoring of steel box girder bridges using non-contact sensors[J]. Structures, 2021, 34: 4012-4024.
[53] Qin X Q, L Q Q, D X L, et al. A structure knowledge-synthetic aperture radar interferometry integration method for high-precision deformation monitoring and risk identification of sea-crossing bridges[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102476.
[54] 孙金更, 张善涛, 张娜. 一种桥梁智能检测飞行机器人:, CN112623221A[P]. 2021.
[55] 谭国金, 杨正, 付巍,等. 一种桥梁挠度智能检测装置及方法:, CN112171692A[P]. 2021.
[56] Peng X, Zhong X G, Zhao C, et al. A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning[J]. Construction and Building Materials, 2021, 299: 123896.
[57] Zhang H B, Li Z C, Chen G D, et al. UAV-based smart rock localization for bridge scour monitoring[J]. Journal of Civil Structural Health Monitoring, 2021, 11: 301-313.
[58] Feroz S, Dabous S A. UAV-Based Remote Sensing Applications for Bridge Condition Assessment[J]. Remote Sensing, 2021, 13(9): 1809.
[59] Dan D H, Dan Q. Automatic recognition of surface cracks in bridges based on 2D-APES and mobile machine vision[J]. Measurement, 2021, 168:108429.
[60] 吴向东, 赵健康, 刘传奇. 基于CNN与CRF的桥梁裂缝检测算法[J]. 计算机工程与设计.
[61] 马学志, 范剑雄, 柴雪松, 李会强, 暴学志, 李健超. 无人机巡检系统在铁路混凝土桥梁检测中的应用[J].铁道建筑, 2021, 61(12): 76-80.
[62] 韩冰, 勾红叶, 华辉,王君明, 杨萌, 梁严军. 正交异性钢桥面板疲劳裂纹智能检测机器人研究[J]. 公路,2021,66(11):143-148.
[63] Liu H J, Chen C, Guo Z Q, et al. Overall grouting compactness detection of bridge prestressed bellows based on RF feature selection and the GA-SVM model[J]. Construction and Building Materials, 2021, 301:124323.
[64] Mariniello G, Pastore T, Asprone D, et al. Layout-aware Extreme Learning Machine to Detect Tendon Malfunctions in Prestressed Concrete Bridges using Stress Data[J]. Automation in Construction, 2021, 132: 103976.
[65] 罗烨钶, 陈永高, 李升才. 基于Fast-ICA算法的改进EEMD算法在桥梁工程中的运用[J]. 公路交通科技, 2021,38(2):11.
[66] Wu Y C, Chen X Z, Wang Y F. Identification of linear and nonlinear flutter derivatives of bridge decks by unscented Kalman filter approach from free vibration or stochastic buffeting response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 214: 104650.
[68] 马彪. 深度学习网络模型在桥梁底部损伤识别中的应用研究[D]. 长安大学, 2021.
[69] 杨瑞腾. 基于图像处理的钢结构桥梁表面病害检测系统[D]. 华中师范大学, 2021.
[70] 邹俊志. 基于卷积神经网络的RC桥梁表观病害识别方法研究[D]. 重庆交通大学, 2021.
[71] 邹俊志, 杨建喜, 李昊, 等. 复杂背景下基于改进YOLO v3算法的桥梁表观病害识别[J]. 铁道科学与工程学报, 2021,18(12):3257-3266.
[72] 李保龙, 房志恒, 战家旺. 基于概率神经网络的钢桁梁桥螺栓脱落损伤定位识别研究[J]. 铁道建筑, 2021,61(7):5.
[73] 杨扬, 王连发, 张宇峰, 等. 基于多特征融合的混凝土结构表面病害图像分类算法[J]. 长安大学学报(自然科学版), 2021,41(03):64-74.
[74] 朱劲松, 李欢, 王世芳. 基于卷积神经网络和迁移学习的钢桥病害识别[J]. 长安大学学报(自然科学版), 2021,41(03):52-63.
[75] 马嘉斌. 基于图像处理的桥梁裂缝识别与测量方法研究[D]. 北京交通大学, 2021.
[76] 谢文高, 张怡孝, 刘爱荣, 等. 基于水下机器人与数字图像技术的混凝土结构表面裂缝检测方法: 第30届全国结构工程学术会议, 中国广东广州, 2021[C].
[77] 王桂平, 陈旺桥, 杨建喜, 等. 基于迁移学习的桥梁表观病害检测技术研究[J]. 铁道科学与工程学报, 2021:1-10.
[78] 包龙生, 曹悦, 赵宁, 等. BP神经网络和曲率模态理论在桥梁损伤识别中的应用[J]. 沈阳建筑大学学报(自然科学版), 2021,37(02):296-302.
[79] 邵红艳, 梁李源, 高士武. 基于卷积自编码神经网络的损伤识别[J]. 科学技术创新, 2021(11):140-141.
[80] 韩宇, 李剑, 马慧宇, 等. 基于CNN-LSTM的桥梁结构损伤诊断方法[J]. 国外电子测量技术, 2021,40(07):1-6.
[81] 朱前坤, 陈建邦, 张琼, 等. 基于计算机视觉人行桥挠度影响线非接触式识别[J]. 工程力学, 2021,38(08):145-153.
[82] 缪炳荣, 彭齐明, 杨树旺, 等. 基于最有价值球员算法的结构损伤识别方法[J]. 重庆交通大学学报(自然科学版), 2022,41(01):67-75.
[83] Nguyen T Q. A deep learning platform for evaluating energy loss parameter in engineering structures[J]. Structures, 2021, 34: 1326-1345.
[84] 韩宇, 李剑, 马慧宇,等. 基于CNN-LSTM的桥梁结构损伤诊断方法[J]. 国外电子测量技术, 2021, 40(7):6.
[85] Khan M A, Khan A A, Domada R, et al. Fire hazard assessment, performance evaluation, and fire resistance enhancement of bridges[J]. Structures, 2021, 34: 4704-4714.
[86] Abedi M, Naser M Z. RAI: Rapid, Autonomous and Intelligent machine learning approach to identify fire-vulnerable bridges[J]. Applied Soft Computing, 2021, 113: 107896.
[87] 熊文, 李刚, 张宏伟, 等. 基于点云数据与工程知识的桥梁形态变化识别方法[J]. 湖南大学学报(自然科学版), 2021:1-9.
[88] Yan Y J, Hajjar J F. Automated extraction of structural elements in steel girder bridges from laser point clouds[J]. Automation in Construction, 2021, 125: 103582.
[89] 毕增辉, 吴学群. 基于指数型空间基的STRE模型在桥梁变形预测中的应用[J]. 中国水运:下半月, 2021,21(5):3.
[91] Wang Y, Wang P, Tang H Y, et al. Assessment and prediction of high speed railway bridge long-term deformation based on track geometry inspection big data[J]. Mechanical Systems and Signal Processing, 2021, 158: 107749.
[92] Wang X D, Miao C Q, Wang X M. Prediction analysis of deflection in the construction of composite box-girder bridge with corrugated steel webs based on MEC-BP neural networks[J]. Structures, 2021, 32: 691-700.
[93] 尚志鹏. 桥梁动力响应的贝叶斯动态预测与监控[D]. 兰州大学, 2021.
[94] Li H L, Wang T Y, Wu G. Dynamic response prediction of vehicle-bridge interaction system using feedforward neural network and deep long short-term memory network[J]. Structures, 2021, 34: 2415-2431.
[95] Gou H Y, Chen X Y, Bao Y. A wind hazard warning system for safe and efficient operation of high-speed trains[J]. Automation in Construction, 2021, 132.
[97] 王俊峰, 黄平明, 韩万水, 等. 基于改进损伤算法及MCMC车流模拟的混凝土桥梁疲劳寿命预测[J]. 湖南大学学报:自然科学版, 2021,48(11):13.
[98] Jiang F, Ding Y L, Song Y S, et al. Digital Twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen[J]. Engineering Structures, 2021, 241: 112461.
[99] Zhu J S, Wang Y L. Feature Selection and Deep Learning for Deterioration Prediction of the Bridges[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 4021078.
[100] 陈小波, 郭祖培, 钱希坤, 等. BIM和GIS数据环境下的桥梁韧性评估多准则决策方法研究[J]. 工程管理学报, 2021:1-6.
[101] 赵小雄. 基于随机森林算法和贝叶斯动态模型的桥梁损伤识别方法研究[D]. 兰州大学, 2021.
[102] Kim H, Yoon J, Hong J, et al. Automated Damage Localization and Quantification in Concrete Bridges Using Point Cloud-Based Surface-Fitting Strategy[J]. Journal of Computing in Civil Engineering, 2021, 35(6): 04021028.
[103] Sengupta A, Guler S I, Shokouhi P. Interpreting Impact Echo Data to Predict Condition Rating of Concrete Bridge Decks: A Machine-Learning Approach[J]. Journal of Bridge Engineering, 2021, 26(8): 04021044.
[104] Li J, He H L, He H B, et al. An End-to-End Framework With Multisource Monitoring Data for Bridge Health Anomaly Identification[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70.
[105] Rachedi M, Matallah M, Kotronis P. Seismic behavior & risk assessment of an existing bridge considering soil-structure interaction using artificial neural networks[J]. Engineering Structures, 2021, 232: 111800.
[106] Wang X W, Li Z Q, Shafieezadeh A. Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: Exploring optimized machine learning models[J]. Engineering Structures, 2021, 236: 112142.
[107] Lin K Q, Xu Y L, Lu X Z, et al. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Automation in Construction, 2021, 123: 103547.
[108] Li T S, Alipour M, Harris D K. Mapping textual descriptions to condition ratings to assist bridge inspection and condition assessment using hierarchical attention[J]. Automation in Construction, 2021, 129: 103801.
[109] Wang K, Ruan T, Xie F X. LR-BCA: Label Ranking for Bridge Condition Assessment[J]. IEEE Access, 2021, 9:4038-4048.
[111] 刘大洋,黄文韬,斯新华,张朋.桥梁病害智能诊断与养护决策系统研究[J].公路交通技术,2021,37(01):101-105.
[112] 张振东,陈卓,张朋,刘大洋,王吉龙.桥梁经常性检查智能系统的开发与应用[J].公路交通技术,2021,37(05):81-85.
[113] Li R, Mo T J, Yang J X, et al. Bridge inspection named entity recognition via BERT and lexicon augmented machine reading comprehension neural model[J]. Advanced Engineering Informatics, 2021. 50: 101416.
[114] Cheng M Y, Fang Y C, Chiu Y F, et al. Design and Maintenance Information Integration for Concrete Bridge Assessment and Disaster Prevention[J]. Journal of Performance of Constructed Facilities, 2021. 35(3): 04021015.
[115] 刘勇,徐峰,张超,蒋艺.基于BIM的高速公路桥梁养护综合管理系统设计[J].自动化仪表,2021,42(10):106-110.
[116] 王刚,杨巍,卢士军,朱旭阳,张印贵.基于BIM技术钢结构桥梁养护管理平台研究[J].交通世界,2021(12):124-125.
[118] Samadi D, Taghaddos H, Nili M H, et al. Development of a Bridge Maintenance System Using Bridge Information Modeling[J]. Civil Engineering Infrastructures Journal, 2021, 54(2): 351-364.
[119] Byun N, Han W S, Kwon Y W, et al. Development of BIM-Based Bridge Maintenance System Considering Maintenance Data Schema and Information System[J]. Sustainability, 2021, 13(9): 4585.
[120] Abdelmaksoud A M, Balomenos G P, Becker T C. Parameterized Logistic Models for Bridge Inspection and Maintenance Scheduling[J]. Journal of Bridge Engineering, 2021, 26(10): 04021072.
[121] Hadjidemetriou G M, Manuel H, Parlikad A K. Condition and criticality-based predictive maintenance prioritisation for networks of bridges[J]. Structure and Infrastructure Engineering, 2021, DOI: 10.1080/15732479.2021.1897146.
[122] Gui, C Z, Zhang J Q, Lei J Q, et al. A comprehensive evaluation algorithm for project-level bridge maintenance decision-making. Journal of Cleaner Production[J], 2021. 289: 125713.
[123] Nili, M H, Taghaddos H, Zahraie B. Integrating discrete event simulation and genetic algorithm optimization for bridge maintenance planning[J]. Automation in Construction, 2021. 122: 103513.
[124] Lzadi M, Motavalli M, Ghafoori E. Thermally-activated shape memory alloys for retrofitting bridge double-angle connections[J]. Engineering Structures, 2021, 245: 112827.
[125] Yang J, Hou P, Pan Y, et al. Shear behaviors of hollow slab beam bridges strengthened with high-performance self-consolidating cementitious composites[J]. Engineering Structures, 2021, 242: 112613.
[126] Xie J H, Li J L, Lu Z Y, et al. Effects of pre-existing damage and cyclic overloading on the flexural behaviour of RC beams strengthened with prestressed CFRP plates[J]. Engineering Structures, 2021, 247: 113078.
[127] Yao Y D, Yan M, Shi Z, et al. Mechanical behavior of an innovative steel–concrete joint for long-span railway hybrid box girder cable-stayed bridges[J]. Engineering Structures, 2021, 239: 112358.
[128] Zhang Y, Zhu Y P, Chen Q H, et al. Precast columns connected with grouted corrugated steel sleeves and UHPC tenon under combined bending and compression[J]. Engineering Structures, 2021, 235: 112080.
[129] Xiao J L, Zhou M, Nie J G, et al. Flexural behavior of steel-UHPC composite slabs with perfobond rib shear connectors[J]. Engineering Structures, 2021, 245: 1112912.