1 无人机遥感的历史和现状
1.1 发展历程
1.2 系统组成
无人机系统主要由地面系统、飞机系统和任务载荷三大系统组成, 其中最重要的飞机系统由飞控、导航、动力、数据链和机体这几大子系统组成。(1)飞控系统连接机身上大量的传感器(包括角速率、姿态、位置、加速度、高度和空速等), 是无人机完成起飞、空中飞行、执行任务和返场回收等整个飞行过程的核心系统。(2)导航系统向无人机提供参考坐标系的位置、速度、飞行姿态, 引导无人机按照指定航线飞行。(3)动力系统:不同用途的无人机对动力装置的要求不同, 但都希望发动机体积小、重量轻、成本低、工作可靠。(4)数据链传输系统负责完成对无人机遥控、遥测、跟踪定位和传感器传输。
1.3 分类与选型
无人机按照其使用功能、气动布局、质量、动力等可以分为不同的类型。按使用功能划分, 可以分为军用、民用和消费无人机。用于科学研究、环境监测、测绘等的多为民用无人机, 而用于个人航拍、游戏等休闲用途的多为消费无人机。目前市面上的无人机种类繁多, 常见的民用的无人机可以根据气动布局和动力分为4种:油动固定翼、电动固定翼、油动旋翼(单旋翼为主)、电动旋翼(多旋翼为主)(图 1)。当然, 即便是同种类型无人机, 性能参数差异也会非常大, 如机型(固定翼)、旋翼数量(旋翼)、飞控系统、载荷的体积和重量、续航时间、飞行速度、海拔高度、抗风能力、起飞降落方式等。无人机的选型需要根据具体的应用需求而具体分析。几张主要民用无人机的优劣势分析见表 1。
4种主要民用无人机类型的优劣势分析
1.4 无人机遥感传感器
为了充分发挥无人机机动灵活的优势, 常用的无人机往往十分轻小, 这一特性决定了无人机搭载的遥感传感器同样要求重量轻、体积小。最常见的高分相机是普通的家用数码相机。例如:总重2.5 kg的美国Trimble UX5无人机搭载的是索尼微单数码相机, 而总重630 g的瑞士SenseFly eBee无人机搭载的是佳能卡片机。多光谱相机种类较少, 如:Tetracam公司的减重版六波段Mini-MCA(630 g)和Micro-MCA(530 g)、FLIR公司的VUE型热红外成像仪(100 g)、RIEGL公司的无人机激光雷达VUX(4.5 kg)。无人机遥感传感器与无人机共同推动了无人机遥感技术的发展。
2 轻小型无人机遥感平台及其研究方法
2.1 轻小型无人机遥感的应用优势
近几年来, 无人机遥感技术的快速发展使得获取实时的高精度遥感影像数据成为可能。与传统的遥感技术和平台相比, 轻小型无人机遥感具有以下优势:
(1) 高分辨率:无人机能够从地面几米高处获取足够高分辨率地面影像的能力(可达到厘米级), 弥补了卫星因天气原因无法获取或者图像分辨率低的不足。
(2) 高时效性:无人机能第一时间获取资源变化数据, 如:可以及时监测风雪灾害、森林火灾、采伐等自然和人类干扰后森林的更新和演替情况。无人机也可以实时传输影像到地面终端或在较短时间内完成整个目标区域的调查, 将影像导入电脑后用专业处理软件可以快速处理, 整个过程可以在几天内完成。
(3) 云层下成像:无人机具有可在云下低空飞行能力, 弥补了卫星光学遥感和普通航空摄影经常受云层遮挡获取不到影像的缺陷。
(4) 移动性能高:无人机平台体积小, 较为轻便, 移动性能好, 在运输、保管环节上与有人飞机遥感平台相比可以节省不少的费用。
2.2 轻小型无人机监测的主要工作流程
基于轻小型无人机监测工作主要由3个部分组成, 分别是前期准备、数据获取和后期数据处理与分析。在前期准备阶段, 主要包括飞行空域申请, 根据气象预报或实际天气情况判定飞行条件, 根据地形、障碍物选择起降场地, 根据监测区域范围、重叠度、分辨率等要求设定飞行航线。在数据获取阶段, 执行飞行并实时监控与飞行安全密切相关的参数。后期数据处理与分析阶段包括图像拼接、几何校正、信息提取与分析等, 具体的内容取决于无人机搭载的遥感设备的要求。
3 无人机遥感在生态学中的发展现状
3.1 植物监测
传统地基于地面的植物组成与结构调查由于所获得的数据精度差、人力成本高、覆盖范围小等限制, 很难应用到较大的取样面积。无人机遥感技术可以部分上弥补这些限制, 目前应该被尝试着在植物资源调查、物候监测、植物病虫害监测等方面。我们选取了植被垂直结构调查和物候监测两个方面的案例来加以说明。
(1) 植被垂直结构调查:植被的垂直结构对森林的生物量分配和碳储量、生产力有着非常重要的影响。同时, 复杂的冠层结构所形成的垂直分层和生态位分化为各种生物提供了重要的生境条件和食物资源, 对许多植物和动物群落的多度和分布格局有显著的影响。然而, 我们对森林冠层的了解大多只限于定性的分析, 而很少定量的分析。一个主要的原因是缺乏有效的收集数据和分析数据的方法。轻小型无人机的发展为更有效地测量植被的垂直结构提供了可能。以我们最近在广东鼎湖山20 hm2(400 m × 500 m)的常绿阔叶林大样地的无人机调查为例(图 3), 我们于2014年采用工业级四旋翼无人机(型号:MD4-1000)收集了该样地范围内所采集的高分辨率(~5 cm)的无人机遥感影像, 并结合地面调查所获得的样地高程数据, 计算出样地林冠层的多个变量(如:林冠层高度、森林郁闭度、林冠层高度的变异程度等)(图 3)。然后, 我们通过与地面调查的植物多样性数据、地形数据、土壤数据等相结合, 对影响植物多样性分布的相关因子的重要性进行了数量上的评价。
(2) 植物物候监测:植物物候是环境条件季节和年级变化最直观、最敏感的综合指示器, 是地球与大气科学应用中研究植物生命周期及其与气候关系的一个重要参量。开展植物物候研究对于深入研究全球变化及与陆地生态系统的关系等方面具有十分重要的意义。传统的植物物候数据采集是通过人工定点目视观测, 这种方法因覆盖范围小、时间序列短等不足, 难以进行较大尺度的物候时空分析。近年来, 随着遥感技术的发展, 基于卫星遥感数据的大面积植物监测已经获得较为广泛地运用。然而, 基于卫星遥感的植物物候研究还面临着数据分辨率低、噪声干扰因素较多、物候期识别方法普适性低、物候研究结果验证不充分等问题。基于轻小型无人机的植物物候监测可以极大地解决地面监测和卫星遥感监测存在的困难, 但这方面的工作还鲜有报道。Dandois和Ellis 报道了他们在美国马里兰的一个50 m×50 m的样地范围内, 用小型无人机对2010年10月至2012年6月之间的植物物候进行了监测, 通过计算RGB(红绿蓝)3个颜色通道的变化来检测植物物候期的变化。Berra等[30]用固定翼无人机对英国一个针阔混交林内的植物物候进行了近4个月的详细监测, 基于RGB3个颜色通道的信息计算了单株个体等级的绿色色度指数(Green Chromatic Coordinate colour index), 结果发现这些个体之间的展叶时间存在着较大变异(最大差异为18 d)。
另外, 以轻小型无人机为研究平台, Inoue等在日本东部的落叶阔叶林内用小型无人机对倒木进行了详细调查, 通过与地面调查比较, 无人机调查准确地记录了80%—90%的胸径大于30 cm的倒木。Getzin等用无人机对德国的10个温带森林样地内的林窗进行了空间定位, 并勾画出其形状和计算其面积。Messinger等在亚马逊地区采集了516 hm2范围内低地森林的无人机影像, 并以此对该区域的地上生物量进行了快速而准确的估计。
3.2 动物监测
近几年来, 以轻小型无人机为平台来监测动物活动也开始引起了动物生态学家的关注。Chabot和Bird及Christie等分别对这一研究领域进行了非常详细的介绍。以下我们从哺乳动物和鸟类为例来加以简单的总结。
(1) 哺乳动物:目前用无人机对哺乳动物的调查主要集中在体型较大的动物。例如, Vermeulen等在非洲西部用无人机对非洲象(Loxodonta africana)种群进行了调查, 在4条样带上共调查到34头大象(图 4)。Israel用无人机装载热红外相机来监测狍子(Capreolus capreolus)的活动。Watts等用无人机影像来估计美国短吻鳄(Alligator mississippiensis)的种群数量。Christiansen等在澳大利亚用无人机影像来测量繁殖期间200头座头鲸(Megaptera novaeangliae)的体型大小的变异。Michez等用无人机监测数据来调查野猪(Sus scrofa)活动对农作物生长的影响。
(2) 鸟类:与一些体型较大的哺乳动物的研究工作相比, 用无人机来监测鸟类活动还刚刚起步。Weissensteiner等用无人机来评估鸟类的繁殖行为, 并与传统的调查方法进行了比较, 发现用无人机调查可以节省传统方法的所需的近85%的时间消耗。Hodgson等以两个热带岛屿和一个北极岛屿为例, 展示了无人机调查鸟类种群数量和行为的优势(图 4)。Rodríguez等通过联合一个小型鸟类的飞行数据记录器和无人机监测的生境数据来分析鸟类物种分布规律。Liu等将无人机用于濒危鸟类物种黑脸琵鹭(Platalea minor)的调查中。
3.3 新出版物和信息平台的出现
4 无人机遥感在中国生态学中的发展现状
5 存在的问题与展望
5.1 无人机数据的获取与处理对多数生态学家还存在技术上的挑战
5.2 无人机在生态学中的应用领域还需要进一步地扩展
如上所述, 无人机遥感技术已经开始应用到动植物监测、生物多样性保护等方面, 然而多数研究还集中在用无人机搭载RGB普通数码相机为监测平台。激光雷达、多光谱与高光谱遥感技术、热红外成像仪等在无人机生态学中的应用案例还不多见, 主要原因在于这些先进的遥感设备成本昂贵, 而且操作和数据处理专业化能力要求较高。另外, 受无人机载荷大小的限制, 这些遥感设备的传统款式还难以广泛应用到无人机监测中。适合无人机平台的轻量级的遥感设备也仅仅是近几年才陆续有商业化的产品出现。
另外, 无人机在长期生态学研究中的例子还没有报道, 主要原因是无人机生态学的发展才仅仅有几年的历史。无人机监测的高时效性和高度的灵活性为长期监测各种生态系统的动态变化(包括植物物候变化、物种组成变化、自然和人类干扰等)提供了可能。随着无人机监测数据在时间和空间尺度上的积累, 这些数据将为我们回答一些生态学中的重大科学问题提供重要支持。
5.3 无人机操控行业的管理规范与技术标准尚不完善
综上所述, 无人机遥感以其诸多难以替代的应用优势, 为生态学、保护生物学等相关学科的发展注入新的活力, 其应用潜力巨大, 前景十分广阔, 对于传统野外调查工作量巨大且辛苦的生态学家来说, 充满诱惑和吸引力。正如Anderson和Gaston 在他们的文章所说, 轻小型无人机遥感将革新空间生态学的研究, 正在成为生态学家的重要研究工具。无人机遥感技术在生态学中的应用还存在技术门槛较高和法律法规不完善等限制, 但这仅仅是时间问题, 在可预见的未来必将被一一克服。