LCD液晶屏的RGB接口通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及三者组合来得到丰富多彩的颜色,RGB分别代表红、绿、蓝三个通道的颜色,它们三者之间的组合几乎包括了人类视觉感知的所有颜色,是最常用的颜色体系之一。所以LCD液晶屏的RGB接口就是分三原色输入的视频接口。通常一个颜色通道由8bit表示, 即每个颜色通道值的范围是0~255, 通常称RGB888/RGB24。三个颜色通道总共能组合出约。在实际的使用中,除了RGB888/RGB24, 还有RGB555,、RGB565、RGB32、RGB666等等。
二、MCU接口
LCD液晶屏的MCU接口主要针对单片机的领域。在尺寸较小的手机上大量使用,主要优势是价格便宜。MCU接口的标准是因特尔提出的8080总线标准,因此在很多文档中用I80来指MCU接口屏。MCU接口模式分为8080模式和6800模式,主要是时序的区别。数据位传输有8位,16位,18位,24位。连线分为:CS/RS/RD/WR/。优点是控制简单方便,无需时钟和同步信号。缺点是要耗费GRAM,所以难以做到大屏,一般都用在4寸以下。对于MCU接口的LCM,其内部的芯片就叫LCD驱动器。主要功能是对主机发过的数据/命令,进行变换,变成每个像素的RGB数据,使之在屏上显示出来。这个过程不需要点、行、帧时钟。
三、LVDS接口
LCD液晶屏的LVDS接口即Low Voltage DifferentialSignaling,是一种低压差分信号技术接口。克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。
四、MIPI接口
LCD液晶屏的MIPI接口是Mobile Industry ProcessorInterface的缩写。MIPI(移动行业处理器接口)是MIPI联盟发起的为移动应用处理器制定的开放标准。MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。
在LCD液晶屏选择与定制的过程中,使用何种LCD接口类型,主要是根据主板的接口而定,通过软件驱动的匹配,来点亮屏幕,从而实现产品的显示方案。
LCD液晶屏接口类型
TFT-lCD常用的接口,TTL(RGB)、LVDS、EDP、MIPI,这篇我们大致说一下这些接口的信号组成已经基本原理。
一、TTL
1、TTL接口概述
TTL(Transistor TransistorLogic)即晶体管-晶体管逻辑,TTL电平信号由TTL器件产生。TTL器件是数字集成电路的一大门类,它采用双极型工艺制造,具有高速度、低功耗和品种多等特点。
TTL接口属于并行方式传输数据的接口,采用这种接口时,不必在液晶显示器的驱动板端和液晶面板端使用专用的接口电路,而是由驱动板主控芯片输出的TTL数据信号经电缆线直接传送到液晶面板的输人接口。由于TTL接口信号电压高、连线多、传输电缆长,因此,电路的抗干扰能力比较差,而且容易产生电磁干扰(EMI)。在实际应用中,TTL接口电路多用来驱动小尺寸(15in以下)或低分辨率的液晶面板。TTL最高像素时钟只有28MHz。
TTL是信号时TFT-LCD唯一能识别的信号,早期的数字处理芯片都是TTL的,也就是RGB直接输出到TFT-LCD。
2、TTL接口的信号类型
驱动板TTL输出接口中一般包含RGB数据信号、时钟信号和控制信号这三大类信号。如下图所示:
(1)RGB数据信号
a、单通道TTL
单通道6bit TTL输出接口
对于6bit单路TTL输出接口,共有18条RGB数据线,分别是R0~R5红基色数据6条,G0~G5绿基色数据6条,B0~B5蓝基色数据6条,共3*6=18条。由于基色RGB数据为18bit,因此,也称18位或18bitTTL接口。
单通道8bit TTL输出接口
对于8bit单路TTI,输出接口,共有24条RGB数据线,分别是R0~R7红基色数据8条,B0~B7绿基色数据8条,BO~B7蓝基色数据8条,共3*8=24条。由于基色RGB数据为24bit,因此,也称24位或24bitTTL接口。
b、双通道TTL
双通道,也就是两组RGB数据,分为奇通道、偶通道,时钟有的也分为OCLK/ECLK,有的公用一个,我们示意图上画了两个,如下所示:
双通道6bit TTL输出接口
对于6bit双路TTL,输出接口,共有36条RGB数据线,分别是奇路RGB数据线18条,偶路RGB数据线18条,3*6*3=36条。由于基色ROB数据为36bit,因此,也称36位或36bitTTL接口。
双通道8bit TTL输出接口
对于8bit双路TTL输出接口,共有48条RGB数据线,分别是奇路RGB数据线24条,偶路RGB数据线24条,3*8*2=48条。由于基色RGB数据为48bit,因此,也称48位或48bitTTL接口。
(2)时钟信号
是指像素时钟信号,是传输数据和对数据信号进行读取的基准。在使用奇/偶像素双路方式传输RGB数据时,不同的输出接口使用像素时钟的方法有所不同。有的输出接口奇/偶像素双路数据共用一个像素时钟信号,有的输出接口奇/偶两路分别设置奇数像素数据时钟和偶数像素两个时钟信号,以适应不同液晶面板的需要。
(3)控制信号
控制信号包括数据使能信号(或有效显示数据选通信号)DE、行同步信号HS、场同步信号VS。
二、LVDS
1、LVDS接口概述
LVDS,即Low Voltage DifferentialSignaling,是一种低压差分信号技术接口。克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。
2、LVDS接口电路的组成
在液晶显示器中,LVDS接口电路包括两部分,即主板侧的LVDS输出接口电路(LVDS发送端)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送端将TTL信号转换成LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收端的LVDS解码IC中,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。也就是其实TFT只识别TTL(RGB)信号。这部分我们做samsung的方案中用的比较多,因为samsung芯片没有LVDS输出,所以我们用LVDS接口的TFT-LCD的时候就要加一个(RGB-LVDS)转换芯片,这个后面我们重点说。
3、LVDS接口的信号类型
LVDS信号有数据差分和时钟差分信号组成。如下图所示:
(1)、单通道LVDS
单通道6位数据(如果是6位的Y3M/P这组红色的线没有)
有4组差分线,3组信号线,一组时钟线。Y0M、Y0P、Y1M、Y1P、Y2M、Y2P、CLKOUT_M、CLKOUT_P。
单通道8位数据
有5组差分线,4组信号线,一组时钟线。分别是Y0M、Y0P、Y1M、Y1P、Y2M、Y2P、CLKOUT_M、CLKOUT_P。
(2)、双通道
LVDS在传输分辨率较高的数据时,抗干扰能力比较强,可是1920X1080以上分辨率时,单路不堪重负,所以有双路接口出现。目的很简单,加快速度,增强抗干扰能力。
双通道6位数据
刚好是单通道的两倍,时钟也是两路,红色部分:Y3M、Y3P、Y3M1、Y3M1这两组信号不接。
双通道8位数据
和前面的比较类似。
三、EDP
这个接口比较陌生,我接触到一个屏IPAD3的,用于高清屏,比如2048*1536,goole n10的分辨率2536* 也是用这个接口。
(整理中…………)
四、MIPI接口
这个我们公司有产品用,不过是其他平台的,不是我们调试,我也没接触过。只是过一下。感觉这类接口非常类似:比如LVDS、EDP、HDMI、MIPI,都是差分信息+差分时钟。
LCD的接口有多种,分类很细。主要看LCD的驱动方式和控制方式,目前手机上的彩色LCD的连接方式一般有这么几种:MCU模式,RGB模式,SPI模式,VSYNC模式,MDDI模式,DSI模式。MCU模式(也写成MPU模式的)。只有TFT模块才有RGB接口。
但应用比较多的就是MUC模式和RGB模式,区别有以下几点:
RGB接口:在写LCD register setting时,和MCU接口没有区别。区别只在于图像的写入方式。
2.用MCU模式时由于数据可以先存到IC内部GRAM后再往屏上写,所以这种模式LCD可以直接接在MEMORY的总线上。
用RGB模式时就不同了,它没有内部RAM,HSYNC,VSYNC,ENABLE,CS,RESET,RS可以直接接在MEMORY的GPIO口上,用GPIO口来模拟波形.
RGB接口方式:显示数据不写入DDRAM,直接写屏,速度快,常用于显示视频或动画用。
MCU接口和RGB接口主要的区别是:
MCU接口方式:显示数据写入DDRAM,常用于静止图片显示。
MCU模式
LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。
LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...
根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。
电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...
在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...
LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。
在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...
开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
LED驱动电源在LED照明系统中扮演着至关重要的角色。由于LED具有节能、环保、长寿命等优点,使得LED照明在各个领域得到广泛应用。然而,LED的电流、电压特性需要特定的驱动电源才能正常工作。本文将介绍常用的LED驱动电...
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电源转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
种种迹象都在表明,半导体行业或已提前进入寒冬时期,越来越多的厂商开始扛不住了……
崧盛股份9日发布投资者关系活动记录表,就植物照明发展趋势、行业壁垒等问题进行分享。植物照明未来市场需求广阔崧盛股份指出,植物照明将会走向长期产业领域。主要原因有三:第一,LED植物照明赋能终端种植更具有经济价值。由于LE...
在当今高度发展的技术中,电子产品的升级越来越快,LED灯技术也在不断发展,这使我们的城市变得丰富多彩。 LED驱动电源将电源转换为特定的电压和电流,以驱动LED发光。通常情况下:LED驱动电源的输入包括高压工频交流电(即...
人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如LED电源。
随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。LED驱动电源实际上是一种电源,但是它是一种特定的电源,用于驱动LED发射带有电压或电流的光。 因此,LE...
LED灯作为一种新型节能和无污染光源,由于其特有的发光照明特性,在现代照明应用中发挥着革命性的作用。作为 LED 照明产业链中最为核心的部件之一,LED 驱动电源的驱动控制技术所存在的可靠性低、成本高等典型问题一直制约着...
随着社会的快速发展,LED技术也在飞速发展,为我们的城市的灯光焕发光彩,让我们的生活越来越有趣,那么你知道LED需要LED驱动电源吗?那么你知道什么是LED驱动电源吗?
早前有新闻称,Cree在2018年开始宣布转型高科技半导体领域,并一边逐渐脱离照明与LED相关业务,一边持续投资半导体。在今日,Cree宣布与SMART Global Holdings, Inc.达成最终协议,拟将LED...