无人机的飞行原理及控制方法

无人机的飞行原理及控制方法(以四旋翼无人机为例)

四旋翼无人机一般是由检测模块,控制模块,执行模块以及供电模块组成。检测模块实现对当前姿态进行量测;执行模块则是对当前姿态进行解算,优化控制,并对执行模块产生相对应的控制量;供电模块对整个系统进行供电。

四旋翼无人机机身是由对称的十字形刚体结构构成,材料多采用质量轻、强度高的碳素纤维;

在十字形结构的四个端点分别安装一个由两片桨叶组成的旋翼为飞行器提供飞行动力,每个旋翼均安装在一个电机转子上,通过控制电机的转动状态控制每个旋翼的转速,来提供不同的升力以实现各种姿态;

每个电机均又与电机驱动部件、中央控制单元相连接,通过中央控制单元提供的控制信号来调节转速大小;

IMU惯性测量单元为中央控制单元提供姿态解算的数据,机身上的检测模块为无人机提供了解自身位姿情况最直接的数据,为四旋翼无人机最终实现复杂环境下的自主飞行提供了保障。

现将位于四旋翼机身同一对角线上的旋翼归为一组,前后端的旋翼沿顺时针方向旋转,从而可以产生顺时针方向的扭矩;而左右端旋翼沿逆时针方向旋转,从而产生逆时针方向的扭矩,如此四个旋翼旋转所产生的扭矩便可相互之间抵消掉。由此可知,四旋翼飞行器的所有姿态和位置的控制都是通过调节四个驱动电机的速度实现的。

一般来说,四旋翼无人机的运动状态主要分为悬停、垂直运动、滚动运动、俯仰运动以及偏航运动五种状态。

悬停

悬停状态是四旋翼无人机具有的一个显著的特点。在悬停状态下,四个旋翼具有相等的转速,产生的上升合力正好与自身重力相等,即。并且因为旋翼转速大小相等,前后端转速和左右端转速方向相反,从而使得飞行器总扭矩为零,使得飞行器静止在空中,实现悬停状态。

垂直运动

垂直运动是五种运动状态中较为简单的一种,在保证四旋翼无人机每个旋转速度大小相等的倩况下,同时对每个旋翼增加或减小大小相等的转速,便可实现飞行器的垂直运动。当同时増加四个旋翼转速时,使得旋翼产生的总升力大小超过四旋翼无人机的重力时,即,四旋翼无人机便会垂直上升;反之,当同时减小旋翼转速时,使得每个旋翼产生的总升力小于自身重力时,即,四旋翼无人机便会垂直下降,从而实现四旋翼无人机的垂直升降控制。

翻滚运动

横滚控制:横滚是无人机绕机身纵轴(Y轴)旋转的动作。

翻滚运动是在保持四旋翼无人机前后端旋翼转速不变的情况下,通过改变左右端的旋翼转速,使得左右旋翼之间形成一定的升力差,从而使得沿飞行器机体左右对称轴上产生一定力矩,导致在方向上产生角加速度实现控制的。如图2.3所示,增加旋翼1的转速,减小旋翼3的转速,则飞行器倾斜于右侧飞行;相反,减小旋翼4,增加旋翼2,则飞行器向左倾斜飞行。

俯仰运动

俯仰控制:俯仰是无人机绕机身横轴旋转(X轴)的动作。

四旋翼飞行器的俯仰运动和滚动运动相似,是在保持机身左右端旋翼转速不变的前提下,通过改变前后端旋翼转速形成前后旋翼升力差,从而在机身前后端对称轴上形成一定力矩,引起角方向上的角加速度实现控制的。如图2.4所示,增加旋翼3的转速,减小旋翼1的转速,则飞行器向前倾斜飞行;反之,则飞行器向后倾斜。

偏航运动

偏航控制:偏航是无人机绕垂直轴(Z轴)旋转的动作。

四旋翼的偏转运动是通过同时两两控制四个旋翼转速实现控制的。保持前后端或左右端旋翼转速相同时,其便不会发生俯仰或滚动运动;而当每组内的两个旋翼与另一组旋翼转速不同时,由于两组旋翼旋转方向不同,便会导致反扭矩力的不平衡,此时便会产生绕机身中心轴的反作用力,引起沿角角加速度。如图2.3所示,当前后端旋翼的转速相等并大于左右端旋翼转速时,因为前者沿顺时针方向旋转,后者相反,总的反扭矩沿逆时针方向,反作用力作用在机身中心轴上沿逆时针方向,引起逆时针偏航运动;反之,则会引起飞行器的顺时针偏航运动。

综上所述,四旋翼无人机的各个飞行状态的控制是通过控制对称的四个旋翼的转速,形成相应不同的运动组合实现的。但是在飞行过程中却有六个自由度输出,因此它是一种典型的欠驱动,强耦合的非线性系统。例如,旋翼1的转速会导致无人机向左翻滚,同时逆时针转动的力矩会大于顺时针的力矩,从而进一步使得无人机向左偏航,此外翻滚又会导致无人机的向左平移,可以看出,四旋翼无人机的姿态和平动是耦合的。

四旋翼无人机自主飞行的控制

四旋翼无人机的精确航迹跟踪是实现无人机自主飞行的基本要求。由于四旋翼无人机自身存在姿态与平动的耦合关系以及模型参数不确定性与外界扰动,因此只有实现姿态的稳定控制才能完成航迹的有效跟踪。

在四旋翼无人机的自主控制系统中,姿态稳定控制是实现飞行器自主飞行的基础。其任务是控制四旋翼无人机的三个姿态角(俯仰角、滚转角、偏航角)稳定地跟踪期望姿态信号,并保证闭环姿态系统具有期望的动态特性。由于四旋翼无人机姿态与平动的耦合特点,分析可以得知,只有保证姿态达到稳定控制,才使得旋翼总升力在期望的方向上产生分量,进而控制飞行器沿期望的航迹方向飞行。而四旋翼无人机的姿态在实际飞行环境中会受到外界干扰和不精确模型的参数误差、测量噪声等未建模动态对控制效果的影响。所以,需要引入适当的观测器和控制器对总的不确定性进行估计和补偿,并对其估计的误差进行补偿,来保证四旋翼无人机在外界存在干扰下对姿态的有效跟踪。

三轴陀螺仪,三轴加速度计,三轴地磁传感器和气压计组成的一个IMU

飞控系统主要用于飞行姿态控制和导航,对于飞控而言,首先要知道飞行器当前的状态,比如:三维位置、三维速度、三维加速度、三轴角度和三轴角速度等,总共15个状态。

飞控系统最基础也最难控制的技术难点,其实是要准确地感知这一系列状态,如果这些感知数据问题或者有误差都会导致无人机做一些非正常的动作。目前,无人机一般使用GPS、IMU(惯性测量单元)、气压计和地磁指南针来测量这些状态。GPS获取定位、在一些情况下也能获取高度、速度;IMU主要用来测量无人机三轴加速度和三轴角速度,通过计算也能获得速度和位置;气压计用于测量海拔高度;地磁指南针则用于测量航向。

由于目前传感器设计水平的限制,这些传感器测量的数据都会产生一定的误差,并可能受到环境的干扰,从而影响状态估计的精度。为了保障飞行性能,就需要充分利用各传感器数据共同 融合出具有高可信度的15个状态,即组合导航技术。组合导航技术结合GPS、IMU、气压计和地磁指南针各自的优缺点,通过电子信号处理领域的技术,融合多种传感器的测量值,获得更精准的状态测量。

组合导航

为了提升航拍无人机的感知能力和飞行性能,除了以上基础传感器方案以外,现在主流的无人机产品都加入了先进的视觉传感器、超声波传感器和IMU与指南针冗余导航系统。双目立体视觉系统可根据连续图像计算出物体的三维位置,除了避障功能以外还能提供定位与测速。机身下方的超声波模块起到辅助定高的作用,而冗余的IMU和指南针在一个元件受到干扰时,冗余导航系统会自动切换至另一个传感器,极大提高了组合导航的可靠性。

控制性能

飞控系统先进的控制算法为航拍无人机的飞行和操控带来了很高的控制品质,比如在普通状态下的表现是控制精度高,飞行稳定,速度快。高速飞行不仅对动力系统有较高的要求,更重要的是飞控要达到很高的控制品质和响应速度,除高速飞行以外,飞行器在悬停和慢速控制上也能达到很高的精度。

另外,在设计飞控时,不仅需要考虑到正常飞行状态的控制精度,如悬停位置控制精度,姿态控制精度等,还需要加强了异常飞况的控制品质。如在飞行器断桨、突然受到撞击、突加负重或被其他外力干扰后,控制恢复能力更强,鲁棒性较强,能够应对很多极端状况,这对于飞行安全性来说尤其重要。

故障诊断

在起飞前或飞行过程中,任何微小故障都有可能引发飞行事故。如果飞控系统能实时不断地进行故障监控与故障诊断,就能大幅降低事故发生的概率。飞控系统可以监控诸如振动、电压、电流、温度、转速等各项飞行状态参数,并通过这些监控特征信号进行故障诊断。但是这些信号往往是复杂且没有明显规律的,只有通过对大量故障数据进行数据挖掘,用深度学习技术建立了飞控故障诊断系统,采用模式识别判定故障发生的概率,这套系统才能判定从空中射桨到IMU故障诊断等,对故障进行早期预报,或进行应急处理,使飞行变得更加安全。

THE END
0.无人机飞行原理第11章复合翼无人机基本结构.pptx无人机飞行原理-第11章 复合翼无人机 基本结构.pptx 27页 内容提供方:balala11 大小:6.29 MB 字数:约1.7千字 发布时间:2022-07-01发布于山东 浏览人气:396 下载次数:仅上传者可见 收藏次数:1 需要金币:*** 金币(10金币=人民币1元) 无人机飞行原理-第11章 复合翼无人机 基本结构.pptx 关闭预览 想预览jvzquC41oc~/dxtm33>/exr1jvsm1;544167594824;16<5532654990ujzn
1.融合简化稀疏A*算法与模拟退火算法的无人机航迹规划摘要:针对无人机航迹规划问题, 提出了一种融合简化稀疏A*算法与模拟退火算法(Fusion of Simplified Sparse A*Algorithm and Simulated Annealing algorithm, 简称FSSA-SA)的航迹规划方法. 首先, 在对威胁环境进行建模之后,将模拟退火思想与具体航迹规划问题求解相结合, 给出了模拟退火算法求解航迹规划问题的具体设计与jvzquC41yy}/e6x/c0usi7hp1jznn8723;551?=860nuou
2.用于商用和农业无人机的传感器|TEConnectivityTE Connectivity的高精度高度计(MEAS MS5611-01BA/MS5607-02BA) 让无人机的飞行高度更精准。众所周知,海平面的大气压是1013.24mbar. 高度每上升1m, 气压降低0.1mbar. 但这个上升高度和气压又不是成正比的,海拔越高空气越稀薄,气压变化也就更小,一般我们认为在3000米以内是基本成正比的。MS5607/MS5611利用空气jvzquC41yy}/vn3eqo4dp8hjp/€i1rsfwuzsknx1ugttq{2uqn{ukxsu1cvqnrhcvkuou8itqpk.unsuqty/j}rn
3.大疆无人机飞控系统的原理组成及各传感器的作用四旋翼无人机的精确航迹跟踪是实现无人机自主飞行的基本要求。由于四旋翼无人机自身存在姿态与平动的耦合关系以及模型参数不确定性与外界扰动,因此只有实现姿态的稳定控制才能完成航迹的有效跟踪。 在四旋翼无人机的自主控制系统中,姿态稳定控制是实现飞行器自主飞行的基础。其任务是控制四旋翼无人机的三个姿态角(俯仰jvzquC41dnuh0lxfp0tfv87623e96;;77;80c{ykenk0fnyckny03<<94:?27
4.无人机的运作原理是什么?人工智能2、无人机的工作原理 如果是无人机世界的新手,可能面临的第一个问题是"无人机是如何工作的"?以下是关于大多数消费者无人机如何操作的基本概述。 无人机是一种无人驾驶飞行器(UAV),这意味着其是在没有人类飞行员的情况下飞行的飞机。相反,无人机是由人类操作员使用遥控器或无线电发射器远程控制的。操作员控jvzquC41yy}/rqu0ep5gcz4852=777mvon
5.无人机工作原理:原理与核心系统1、无人机的工作原理是什么? Multi-Rotor 的工作原理是力的相对性质,这意味着当转子推动空气时,空气也会将转子推回。这是多旋翼可以升降的基本原理。此外,转子旋转得越快,升力就越大,反之亦然。 2. 无人机使用WiFi还是蓝牙? 今天的大多数无人机都支持 Wi-Fi,因此它们可以将视频广播到计算机、平板电脑或智能jvzquC41yy}/gnuy0eun0ls1|j{bpufp14<5;A>0jvsm
6.无人机是如何工作的?很多人都对无人机的工作原理和用途感到好奇。本文将讨论无人机技术的基础知识,并提供无人机如何能够飞行的概述;还将探讨无人机的一些不同应用,并解释为什么其变得如此受欢迎! 近年来,无人机风靡全球。 很多人都对无人机的工作原理和用途感到好奇。本文将讨论无人机技术的基础知识,并提供无人机如何能够飞行的概述;还将jvzquC41yy}/7:hvq0ipo8ftvkimg8<966?20qyon
7.无人机平台的基本原理及其应用北斗产业资讯平台无人机平台的基本原理及其应用 行业无人机 摘要:无人机平台是一种可以搭载各种类型传感器和器件的高空飞行平台,可以广泛用于航空摄影、气象探测、环境监测、农业植保等领域。同时,无人机平台可以根据不同需要,搭载不同种类的传感器和数据采集器。无人机平台可以搭载各类气象传感器,利用人工智能、自动升降等技术,提供更加jvzq<84yyy4rz€0eqs0|r}wp1=77@>299?
8.无人机飞手考证必看:无人机基本组成及原理无人机(Unmanned Aerial Vehicle, UAV)作为现代科技的产物,已经渗透到我们生活的方方面面。对于有意考取无人机执照的飞手来说,了解无人机的基本组成和飞行原理是基础中的基础。本文将为您详细介绍无人机的组成部分和飞行原理,为您的考证之路打下坚实的基础。 jvzquC41yy}/imuqygxgn‚3eqo5bt}nengy0y{ohum4ivvq
9.浅析四轴无人机的结构与基本飞行原理军用/航空电子浅析四轴无人机的结构与基本飞行原理 四轴飞行器是微型飞行器的其中一种,相对于固定翼飞行器,它的方向控制灵活、抗干扰能力强、飞行稳定,能够携带一定的负载和有悬停功能,因此能够很好地进行空中拍摄、监视、侦查等功能,在军事和民用上具备广泛的运用前景。四轴飞行器关键技术在于控制策略。 由于智能控制算法在运行复杂jvzquC41yy}/gujehctt0lto1cvqnrhcvkuo1Vnnkvgs{hfxkqtje|4424902>5814686<790jznn
10.2015考研春季马原复习主抓基本概念教育第四模块包括第七八章,是科学社会主义部分,论述社会主义从空想到科学、从理论到实践并在实践中不断探索发展及其发展前途。其中第七章讲社会主义主义社会从无到有,从产生到发展,第八章讲共产主义这一崇高社会理想。 二、如何复习马原? 《马克思主义基本原理概论》由于概念和原理较多,相对难度较大。建议同学们在3-7月jvzq<84gfw4qgxung0ipo7hp1mgp{js1p1813=425380e:64;9;.4=;383>70qyon